Effect of Ambient Temperature on Gross Efficiency

25 Oct

 

Time-trial performance deteriorates in the heat. This might potentially be the result of a temperature-induced decrease in gross-efficiency (GE). The effect of high ambient temperature on GE during cycling was examined in a study published last 2007 in the European Journal of Applied Physiology entitled ‘Effect of Ambient Temperature on Gross Efficiency in Cycling’, with the intent of determining if a heat-induced change in GE could account for the performance decrements in time trial exercise found in literature. Ten well-trained male cyclists performed 20-min cycle ergometer exercise at 60% PVO2max (power output at which VO2max was attained) in a thermo-neutral climate (N) of 15.6+/-0.3 degrees C, 20.0+/-10.3% RH and a hot climate (H) of 35.5+/-0.5 degrees C, 15.5+/-3.2% RH. GE was calculated based on VO2 and RER. Skin temperature (Tsk), rectal temperature (Tre) and muscle temperature (Tm) (only in H) were measured.

GE was 0.9% lower in H compared to N (19.6+/-1.1% vs. 20.5+/-1.4%) (P<0.05). Tsk (33.4+/-0.6 degrees C vs. 27.7+/-0.7 degrees C) and Tre (37.4+/-0.6 degrees C vs. 37.0+/-0.6 degrees C) were significantly higher in H. Tm was 38.7+/-1.1 degrees C in H. GE was lower in heat. Tm was not high enough to make mitochondrial leakage a likely explanation for the observed reduced GE. Neither was the increased Tre. Increased skin blood flow might have had a stealing effect on muscular blood flow, and thus impacted GE. Cycling model simulations showed, that the decrease in GE could account for half of the performance decrement. GE decreased in heat to a degree that could explain at least part of the well-established performance decrements in the heat.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: